
www.manaraa.com

Is Java ready for computational science?Michael PhilippsenComputer Science Dept., University of Karlsruhe, Germanyphlipp@ira.uka.de
In Euro-PDS'98, 2nd European Parallel and Distributed Systems Conference, Vienna, Austria,July 1{3, 1998.

AbstractThis paper provides quantitative and qualitative argumentsthat help to decide whether Java is ready for computationalscience. Current shortcomings of Java as well as appropri-ate countermeasures are discussed.1 IntroductionIn the computational science community, there are twolarge groups of people. Let us call them F and O. Peopleof group F stick to their respective favorite version of For-tran. People of group O are convinced that object-orientedprograms are easier to develop and to maintain and henceactively use C/C++ to solve some of their problems.Members of group F prefer procedural Fortran program-ming because they either have a huge body of existing For-tran programs or they doubt that a language that is notcalled \Fortran" can ever beat Fortran's performance or itsexpressiveness.Since assembly-style C/C++ code can achieve su�cientruntime performance, group O eventually got accredited.Members of group O have learned to use, to abuse, andto dislike C/C++ and often don't see a point of startingover with another language, especially since C/C++ canbe customized by macros and templates.Currently there is a core of people that consider to founda third group J using Java as a main language for computa-tional science. Similar to the situation when group O wasfounded, it is doubted whether su�cient performance canbe reached with the new language, whether its expressive-ness is appropriate, etc. Whereas people of group O hadonly one line of defense, group J is bashed from two sides.Bashing is not the purpose of this paper. Instead,this paper provides quantitative and qualitative arguments.Java's disadvantages are discussed, the likelihood and im-pact of hypothetic future �xes are estimated, trends areshown. On the other hand, several advantages of Java arementioned.For the remainder of this paper we take for granted thatobject-oriented programming is preferable from the soft-ware engineer's point of view. Object-oriented approachesresult in better-designed code, in better maintainability,and in better chances of code re-usability. Given these as-sumptions, the open questions are discussed below. Sec-tion 2 discusses performance, section 3 focuses on the ex-pressiveness, section 4 covers parallel and distributed pro-gramming, section 5 discusses problems related to Java'srules of arithmetic and section 6 collects other aspects.

2 PerformanceWe compare Java's performance to performance of For-tran90 and HPF in two benchmark experiments. The �rstbenchmark is the Sieve of Eratosthenes for �nding primenumbers. The Sieve is implemented in all three languagesand is timed on a single workstation. The second bench-mark targets large-scale geophysical algorithms, that havebeen studied in [8]. We cooperated with the Stanford Ex-ploration Project [3] in implementing parallel versions ofthese algorithms in all three languages. Runtime were mea-sured on an IBM SP/2 (distributed memory parallel archi-tecture) and on a SGI Origin2000 (shared memory parallelarchitecture).2.1 Sieve PerformanceThe Sieve was run on an IBM RS/6000 workstation. Weused the Java Development Kit (JDK) 1.1.2, IBM's For-tran90 compiler, and Portland Group's High-PerformanceFortran, version 2.2.Java performance was measured in three contexts. We�rst timed the runtime of interpreted bytecode. Then weswitched on the just-in-time compiler to speed up the in-terpretation. These are the two standard approaches thatcan be used with any JDK.Every Java virtual machine (JVM) performs arrayboundary checks at runtime to ensure proper accesses. Incase of an illegal access, the JVM raises a runtime excep-tion coupled with a stack trace that points out the linenumber in the source code that has caused the bug. Arrayboundary checks have been introduced into Java becauseof applet security reasons. They are a valued instrumentduring debugging, but are often blamed for slowing downperformance.For RS/6000 workstations, IBM has an alpha versionof a Java compiler, called High Performance Compiler forJava (HPJ) [7] that compiles Java code to native code. HPJhas an option to switch o� array boundary checks, whichwe used in our measurements.Fortran Javasize F90 HPF Java Java HPJ�E6 JIT w/o rt-checks0.1 20 20 1002 52 140.2 40 38 1888 107 300.5 440 323 4349 584 4441.0 1080 807 8195 1393 108910.0 11790 9660 57162 20195 11690Problem size 2 [0.1E6, 10E6]; measurements in seconds.1

www.manaraa.com

There are di�erences between the two Fortran versions:HPF seems to do better code optimization.Interpreted Java (�rst Java column) is signi�cantlyslower than the Fortrans. For small problem sizes, the slow-down factor is outrageous, probably due to the overheadcaused by starting the Java virtual machine. For a size of10E6, the slowdown factor is down to about 6. The just-in-time compiler (second Java column) boosts Java perfor-mance signi�cantly and achieves a slowdown factor of lessthan 2.5 compared to either Fortran. Hence, standard Javatechnology does not perform as badly as often claimed.IBM's native Java compiler (third Java column) achievesalmost the same performance as Fortran, although it is justan alpha version.2.2 Application from GeophysicsWe have studied large-scale geophysical algorithms, calledVeltran velocity analysis and Kirchho� migration to eval-uate Java's e�ciency. These are basic algorithms used ingeophysics for the analysis of the earth's sublayers by meansof sound wave re
ection. Since it can take tera bytes of in-put data to cover a reasonable area, the performance ofthese algorithms is crucial. The geophysics and the detailsof the benchmarks can be found in [8].
JavaParty

Fortran90

sec

8 planes
8 nodes

4 planes
8 nodes

1 plane
4 nodes

1

4

SGI Origin2000 runtime

2

6

3

12

sec

8 planes
8 nodes

4 planes
8 nodes

1 plane
4 nodes

JavaParty

HPF

7

14

25IBM SP/2 runtime

2

5

8

We have implemented these algorithms in a Java envi-ronment, in HPF, and in Fortran90, and benchmarked theprograms on up to 8 nodes of an SGI Origin2000 sharedmemory computer and on 8 nodes of an IBM SP/2 dis-tributed memory parallel machine. On the SGI, we usedSGI's standard Fortran90 compiler; on the IBM SP/2, ver-

sion 2.2 of the Portland Group High Performance Fortrancompiler was used. The Java implementation on both ma-chines uses the JavaParty [9, 13] distributed runtime andcommunication system, which itself is written in and gen-erates Java 1.1.5.On the SGI, our JavaParty implementation is slowerthan the equivalent Fortran90 program by a factor of about4. On the SP/2, JavaParty faces a slowdown by 3. In part,the slowdowns are due to Java's mandatory and implicitarray boundary checking.The JavaParty program automatically adapts both tothe number of planes to be processed and to the numberof nodes available. The Fortran programs did not havethe same adaptability. Instead, we had to change someconstants and recompile the Fortran code for each of themeasurements. Without the manual changes and recom-pilation, the performance of the most general and slowestprogram would have shown up repeatedly. For example,to process one plane on four nodes with the general pro-gram, the Origin2000 needs 3 seconds and the SP/2 needs8 seconds.2.3 Performance OutlookThese benchmarks are not representative. However, it ispossible to reason about the future trends of Java's perfor-mance.We expect signi�cant performance increases for Java inthe near future because of two main reasons. First, wehad to use JDK 1.1.x, because later releases are not yetavailable for our hardware platforms. Later versions (JDK1.2, HotSpot) have increased performance (especially RMIperformance, improved native thread support and just-in-time compilation) on Solaris and Wintel platforms and arelikely to show the same e�ect in our environments. Second,compilers producing optimized native code like IBM's HighPerformance Java Compiler [7] are on the horizon. Thesecompilers will approach Fortran performance because theycan apply muchmore sophisticated optimization techniquesthan current just-in-time compilers. They will outperformC++ compilers in a few years. When comparing Java toC++ from the compiler writer's perspective, it is obviousthat Java's control and data
ow is much easier to analyze.Since there is no pointer arithmetic in Java, aliasing anal-ysis is simpler and can produce more exact knowledge oncontrol and data
ow. Therefore, traditional optimizationtechniques, as for example code and object inlining, dis-patch optimization, register allocation, etc., can be appliedmore often and presumably with more e�ect. As Budimlicand Kennedy stress in [2] the only serious di�culty is thatJava's elaborate exception framework interferes with someoptimization.1Given that assumption and given the results of a re-cent study by Veldhuizen and Jernigan [16] who bench-marked Kuck and Associates' C++ compiler KAI-C++and demonstrated that KAI-C++ can generate faster-than-Fortran code, it is reasonable to conclude, that Java mightas well outperform Fortran.1There are other areas in the current JDK that need improvedperformance. Most notably, thread and synchronization perfor-mance of the JVM and performance of RMI and serialization.These aspects are discussed in section 4.2

www.manaraa.com

But even if Java and/or C/C++ remain slower than For-tran on a runtime scale, economic costs must be considered.A comparative controlled experiment is needed, where sci-enti�c code is developed and maintained twice, both in pro-cedural Fortran and with an object-oriented approach. Theresults of that study can help to put development cost inrelation to relative runtime improvement. Unfortunately,we do not know of any such experiment.23 Expressiveness3.1 Complex NumbersJava supports e�cient implementation of primitive typessuch as boolean, char, int, long, float, and double.Primitive types do not need more memory than necessary.They are neither inherited from the root of the class hi-erarchy nor are they accessed indirectly through a pointer(or pointers). However, for computational science it is un-acceptable that Java does not o�er complex numbers asprimitive type.With current Java, programmers can only �ll that gapby de�ning a class Complex of their own (or by downloadingsuch a class from the Web [17]). This approach has thefollowing disadvantages.� Object creation cost. Object creation in Java is ex-pensive since each object needs some memory that mustbe initialized and registered for garbage collection, and anadditional lock object must be created. Hence, for perfor-mance reasons numerous or frequent creation of tiny ob-jects must be avoided, especially, since most of the costlyfeatures of objects are not needed in calculations with com-plex numbers.� Object access cost. Whereas variables of primitivetypes can be referred to internally by a simple address inmemory, object access requires a pointer indirection.3� Awkward arithmetic expressions. The program-mer must use methods to express arithmetic expressions,since in�x operations are only de�ned for existing primitivetypes. For complicated arithmetic expressions the resultingcode is harder to decipher than with in�x operations.� Math library problems. The JDK comprises a classjava.lang.Math. This library contains methods for per-forming basic numeric operations such as min/max, the el-ementary exponential, logarithm, square root, and trigono-metric functions. Most of the methods are o�ered severaltimes, once for each relevant primitive type to be selectedby static of dynamic dispatch. There are of course no ver-sions for complex numbers in that library. But unfortu-nately, they cannot even be added by means of inheritance,since the class is declared final. Thus, if the programmerdecides to use his own Complex class, he will �nd min andmax methods for all primitive types in java.lang.Math,except for his own implementation of min and max in classComplex.2We are interested to hear suggestions of experimental set-tings of manageable size that can be used for such a study.3Early Java virtual machine implementations needed a dou-ble indirection to implement correct garbage collection. Perfor-mance has improved since then.

Adding complex numbers as primitive types to Java isneither costly for compiler writers nor does it cause com-patibility problems with existing distributions. When com-plex numbers are added, corresponding in�x operations areinstantly available, the library problem will be trivial to �x.The more general solution of adding a special type ofvalue (i.e. pass-by-value, lightweight, or in-line) classesthat allows the e�cient implementation of primitive typeshas two disadvantages. First, they require more extensionsof Java since general operator overloading is needed. Sec-ond, it might result in a rede�nition of existing primitivetypes because of orthogonality.It seems to be the only real problem that complex num-bers are predominantly needed by the computational sci-ence community, which is rather small in size.3.2 Generic classesJava does not o�er generic classes. This is especiallypainful when using container classes because of reducedperformance and reduced type checking. Moreover, genericclasses are a prerequisite for elegantly adding operator over-loading to the language, as will be discussed in section 3.3.In Java, container types must be based on class Object,which is the root of the class hierarchy. Whenever an objectis added to the container, the knowledge about its type islost. When the object is extracted from the container, theprogrammer must cast it down to its original type. Theruntime check Java uses to guarantee the validity of thiscast is time consuming.If instead one could express generic container classes,that are specialized to a speci�c type upon instantiation,these runtime checks can be eliminated. Moreover, thestatic compile time type checking can prevent bugs thatotherwise only show at runtime.Adding generic classes to Java is non-trivial, since thenew type system must be well-de�ned and contain the ex-isting type system as special case. Another problem is thatit is undesirable to change the bytecode or to alter Java'sapproach to separate compilation. Several solutions havebeen proposed, the Pizza type system is one of those [10],and there are rumors that generic classes are strong candi-dates for a future extension of Java. Compared to complexnumbers, the demand for generic classes is not restrictedto computational scientists.In the meantime, Pizza's generic classes can be used.The Pizza system [10, 14] provides a source-to-source trans-formation of Java with generic classes into regular Java.3.3 Operator OverloadingWhen complex numbers are introduced into Java, the cor-responding in�x operator will be introduced as well. Thissection discusses Java's lack of operator overloading for ref-erence types.For computational science there must be in�x operatorsfor arrays (and matrices) to cover demands from the For-tran group. If it is missing, development and maintenanceare more di�cult, since otherwise clear formulae must bedistorted by long method names and awkward orderings ofoperands.Although is it technically quite simple to add any formof operator overloading for reference types to a Java com-3

www.manaraa.com

piler, it is di�cult to �nd a form that is suitable and thatis not in con
ict with Java's design goals. The key prob-lem is that operator overloading can always be abused towrite code that is di�cult to understand and maintain. Anappropriate form of operator overloading may guide pro-grammers away from abuse.Java's philosophy will not permit overloading of prim-itive type operators. No Java programmer will ever beable to rede�ne the meaning of a + between two float val-ues. Similarly, array indexing or pointer dereferencing, andequality testing are unlikely to be candidates for overload-ing, although admittedly, there might be some rare situa-tions where this type of overloading actually can improvecode quality.For reference types, an approach used in the Sather lan-guage [11, 12] seems reasonable. For an in�x operator 2 ina class A, the programmer can provide a method that takesa B as an argument and returns a C. The signature looks likeC 2-Op(B). Whenever the compiler sees an in�x operator2 between two reference types, e.g. a 2 b, this operatoris taken to be syntacic sugar for a method invocation, likea.2-Op(b). Hence, regular dispatch rules can be appliedto operator overloading as well.Two types of questions remain: First, does 2 stand forregular arithmetic operators (+, -, *, . . .) and/or will it bepossible to de�ne methods for other (Unicode-) symbols,4e.g. �, �, �, . . . ? Second, what is an appropriate name ofthe method 2-Op? The name should be selected in a wayto guide away programmers from abuse. It will probablybe best, if the operator symbol appears textually in themethod name.In conclusion, operator overloading for complex num-bers is for free if complex numbers are added as primitivetypes. Operator overloading for reference types is techni-cally simple but needs to be carefully designed to reduceabuse.3.4 ArraysJava's arrays are not based on a consecutive memory layoutthat is visible to the user. Therefore, the mechanisms toaccess subsections of arrays di�er from their counterpartsin Fortran and C/C++.The only way to extract a subsection of a one-dimensional array in Java is to use arraycopy and actu-ally create a copy. The copy operation is time consumingalthough JVM implementations usually o�er e�cient na-tive routines for that purpose. More signi�cantly however,the necessity to actually copy array data might use up theavailable memory, especially in data intensive applications.Since multi-dimensional arrays are implemented as ar-rays of array objects in Java, multi-dimensional arrays can-not be unrolled into one-dimensional arrays simply by cast-ing (and vice versa). Instead, arraycopy must be usedagain. As in C/C++, it is easy to access a single dimen-sion of an array in Java, but it is more di�cult to access theother dimension. In C/C++, this problem can be solvedby pointer arithmetic or by overloading the array accessoperators, both of which is not possible in Java.Since it requires signi�cant changes of the language, theJVM, and the garbage collector, it is unlikely, that either4This is a suggestion of Guy Steele.

special syntax for multi-dimensional array will be added toJava or a special new operator will be added that requirescontiguously stored multi-dimensional array data.As a consequence, a modular design must be used toimplement �ltered accesses to multi-dimensional arrays inJava: array elements and the corresponding index transfor-mations are hidden behind well-de�ned classes. Althoughsuch a design is preferable from the software engineer'spoint of view, C/C++ people claim that it results in poorperformance and awkward accessor routines.Due to Java's relative simplicity, an aggressive optimizercan e�ectively inline index computations and can success-fully try to eliminate invariant expressions [1]. We expectthat much of the performance loss encountered in C/C++implementations that use the additional layer of abstrac-tion, can be compensated in Java by a clever optimizer.Array boundary checking for every single array accessis expensive and|at the same time|one of the main rea-sons for the reliability of Java programs. Either compilertechniques will be used to prove that certain array bound-ary checks can be avoided, or JVM's will need an option toswitch o� these checks.In conclusion, Java's array mechanisms coupled withsome library support for multi-dimensional arrays will notprevent su�cient performance. However, due to the addi-tional layer of abstraction, the code will look di�erent fromwhat it looks like in today's Fortran and C/C++ programs.The necessary compiler optimizations techniques are knownand they can be used more often and more e�ectively thanthey can be in C/C++ code.Although having Fortran90 style array section notation(A[first:last:increment]) would increase code readability,it is unlikely to be incorporated into Java. Since most usersof Java are not interested in computational science, it ap-pears unrealistic to hope for section notation that wouldrequire signi�cant extensions of both the Java compiler andthe bytecode.3.5 Standard LibrariesJava is often accused of lacking standard libraries thatare commonly used in computational science. However, ifgroup J grows in size, standard libraries will become avail-able.In the meantime, the Java Native Interface (JNI) o�ersa platform independent way to call native code, i.e., touse existing implementations of standard libraries throughwrapper classes. Although that approach is not acceptablein the long run, it is su�cient for
ying a kite. The goodnews is that recently, such libraries have begun to appear,see for example [17].4 Parallel and Distributed ComputingJava has standardized threads and synchronization in thelanguage and o�ers portable libraries for distributed pro-gramming. This is an essential advantage over other lan-guages. However, there are some performance problems tobe solved.� Distribution. Since there are MPI and PVM librariesfor Java, Java can be used for low level distributed program-4

www.manaraa.com

ming much like Fortran or C/C++. Similar to C/C++,Java also o�ers socket communication.But in addition, the JDK includes a remote methodinvocation package (RMI) that can be used to distributeregular Java objects across the network. RMI thus is anobject-oriented mechanism for distributed programming,providing a standard remote procedure call mechanism forobjects, coupled with a remote garbage collector. Althoughsimilar libraries are available for C/C++, only RMI is fullyportable.The main problem is that the performance of RMI isweak and has some seemingly inexplicable drops in ef-�ciency presumably because of internal bu�ering. Theclosely related serialization used for marshaling and un-marshaling of data structures is known to be slow as well.A better understanding, thorough benchmarking, and de-tailed documentation of the performance would help.� Threads. Few people from the C/C++ group usethreads. This is because thread programming usually re-sults in non-portable programs, and because synchroniza-tion is di�cult. Java's threads do not alleviate the di�cultyof synchronization, but they are truly portable.On the other hand, existing implementations of trulyparallel threads on multi-processor shared memory ma-chines currently do not perform well. There are perfor-mance problems with thread synchronization and scalablethread support in the JVM.5 Rules of ArithmeticJava has well-de�ned arithmetic operators. There seems tobe nothing that is left open as an implementation decision.Hence, Java arithmetic is fully portable and computes thesame results on any platform. Yet, there are di�erencesbetween Java and both C/C++ and Fortran.� Integer Division. One of problems with C/C++ hasbeen solved in Java by de�nition. For the division of twointegers it is not well de�ned in C/C++ whether this op-eration will round towards zero or towards -in�nity, wheneither or both operands are negative. In Java, integer di-vision rounds towards zero (exception for over
ow condi-tions).� Floating Point Promotion. Darcy and Kahan pointedout in [4] that there are cases where Java's arithmetic com-putes results that are di�erent from Fortran's, althoughboth languages are based on the IEEE 754 standard. Thedi�erences can only be noticed if float values are used andare caused by a loss of precision in temporary expressions.Given a tree representation of an expression, Java an-alyzes the type information of the two operands for everybinary operation. When at least one of them is a double,the other is widened to a double as well. If both operandsof a binary operator are float values, no widening is used,i.e., Java carries out the operator with float precision. Incontrast, Fortran instantly widens all operands if there ishardware support for double or long double precision.� Rounding. The result of a binary
oating point oper-ation is a value, that in general cannot be represented inthe IEEE
oating point format exactly. Instead, the resultmust be rounded.

Although IEEE numerics allow the programmer to selectfrom di�erent rounding modes (zero, up, down, nearest),Java's numerics round to the nearest representable
oatingpoint number.Several suggestions have been made to extend Java'srounding. The disadvantage of a global method to selecta rounding mode, is that it might interfere with roundingmodes used in �ne tuned numeric libraries. The problemwith newly introduced syntax for rounding is that it wouldcause another alteration of the language de�nition.Another probable oversight in the de�nition of Java isthat arithmetic exceptions are not mapped to Java excep-tions, and all IEEE types of NaN values are collapsed intoa single NaN recognized by Java.Sun has recently announced [15] a proposal to changeJava's
oating point speci�cation. Unfortunately, no de-tails on that proposal are available at the time of writing.6 Other Aspects�Graphical Interface. Java provides a closely integratedGUI library that is both portable and easy to use. Thisis a signi�cant improvement over Fortran, that does notsupport programming of GUIs.In the C/C++ world, the situation is di�erent butnot better. Every window system comes with a plat-form speci�c library, that must be used to access the GUI.These libraries, for example X toolkit, Microsoft Founda-tion Classes, Borland OWL, . . . , are non-portable and re-quire skills to use them, skills that neither are nor shouldbe standard for computational scientists.Due to the close integration of a portable GUI library,appealing GUIs or even remote applet access to scienti�capplications will be implemented. It will become easier toshare results with colleagues.� Programmer Force. An increasing number of entry-level students is exposed to Java as their �rst lan-guage. Java is beginning to replace other languages inschools/colleges. And even Teenagers dive into Java be-cause they want to create their own applets to spice uptheir home pages.In a few years, students probably already know Javawhen they start to learn Fortran. Fortran will appearprimitive in comparison. The situation will be similar forC/C++, where students will struggle with the complexityof C/C++ while trying to �nd the advantages over Java.Sun has recently announced to cooperate with academiaall over the world in launching courses that help practition-ers from industry to gain Java knowledge. The courses willlead to a certi�cate called \Java Architect".In a few years, it will be easier to recruit people to workin group J. Good Fortran programmers might become rare.� Availability. Java is available on various platforms.Both SGI and IBM have implemented Java for their parallelmachines. Other vendors will follow.Java is inexpensive since the basic technology can bedownloaded for free. Similar to the C/C++ world, wherethere are both commercial compilers and public domaintools, high performance compilers that do aggressive op-timization, will no longer be for free. However, since themarket for Java technology is much bigger than the market5

www.manaraa.com

for Fortran compilers, Java technology will be cheaper thanFortran.7 Related WorkAfter this paper has been accepted for Euro-PDS, the JavaGrande Forum [5] was founded that tackles some of theproblems mentioned in this paper. The goal of Java Grandeis to develop community consensus and recommendationsfor either changes to Java or establishment of standardsfor libraries and services. The hope of the Grande teame�ort is that a uni�ed voice will result in the best-everJava-enabled programming environment to support high-performance parallel and distributed computing and com-putational science applications.James Gosling has thought about numerical computingin Java. Preliminary results can be found at [6]. Sun hasrecently announced [15] a proposal to change Java's
oat-ing point speci�cation. Unfortunately, no details on thatproposal are available at the time of writing.8 ConclusionJava will become a major language for computational sci-ence. This paper has tried to provide an objective evalua-tion of the pros and cons. Of course it is up to the reader todecide whether it is time to jump on the Java bandwagonright now or to remain watching for a while.The paper mentioned several open issues. It suggesteda competitive benchmark of memory consumption, and acontrolled experiment to compare development time versusrun time. Moreover, a Java compiler should experimentallybe extended to handle complex numbers and correspond-ing in�x operations. Furthermore, the implications of anadditional interface In�x have to be studied in more detail.AcknowledgmentsI would like to thank Matthias Jacob for his implemen-tation of the Sieve and the geophysical algorithms. TheICSI in Berkeley provided an opportunity to work in theSather group and to gain an understanding of the demandsof computational sciences.References[1] D.F. Bacon, S.L. Graham, and O.J. Sharp. Com-piler transformations for high-performance computing.ACM Computing Surveys, 26(4):345{420, 1994.[2] Z. Budimlic and K. Kennedy. Optimizing Java: The-ory and practice. Concurrency: Practice and Experi-ence, 9(6):445{463, 1997.[3] J. Clearbout and B. Biondi. Geophysics in object-oriented numerics (GOON): Informal conference. InStanford Exploration Project Report No. 93. October1996. http://sepwww.stanford.edu/sep.[4] J.D. Darcy and W. Kahan. Borneo language.http://www.cs.berkeley.edu/�darcy/Borneo.[5] Geo�rey Fox. The Java Grande forum. http://www.npac.syr.edu/projects/javaforcse/javagrande.

[6] James Gosling. The evolution of numerical computingin Java. http://java.sun.com/people/jag/FP.html.[7] HPJ. http://www.alphaWorks.ibm.com.[8] M. Jacob. Implementing Large-Scale Geophysical Al-gorithms with Java: A Feasibility Study. Master'sthesis, Univ. of Karlsruhe, Dept. of Informatics, 1997.[9] JavaParty. http://wwwipd.ira.uka.de/JavaParty.[10] M. Odersky and P. Wadler. Pizza into Java: Trans-lating theory into practice. In Proc. 24th ACM Symp.on Principles of Programming Languages , pages 146{159, Paris, Fance, 1997.[11] S.M. Omohundro. The Sather programming language.Dr. Dobb's Journal, 18(11):42{48, 1993.[12] S.M. Omohundro and D. Stoutamire. The Sather 1.1speci�cation. Technical Report TR-96-012, Interna-tional Computer Science Institute, Berkeley, 1996.[13] M. Philippsen and M. Zenger. JavaParty: Transparentremote objects in Java. Concurrency: Practice andExperience, 9(11):1225{1242, 1997.[14] Pizza. http://www.cis.unisa.edu.au/�pizza.[15] Sun proposes modi�cation to Java's
oating pointspec. http://www.sun.com/smi/Press/sun
ash/9803/sun
ash.980324.17.html, March 1998.[16] T.L. Veldhuizen and M. Ed Jernigan. Will C++ befaster than Fortran? In Proc. of ISCOPE97, Intl.Conf. on Scienti�c Computing in Object-oriented Par-allel Environments, 1997.[17] VisualNumerics. http://www.vni.com.

6

